مشهورترین پارادوکس‌های تاریخ – قسمت هفتم

پارادوکس راسل (Russell Paradox)

پارادوکس راسل از مهم‌ترین پارادوکس‌های نظریه مجموعه‌ها است که توسط ریاضیدان و فیلسوف انگلیسی برتراند راسل در سال ۱۹۰۱ معرفی شد.

این پارادوکس نشان می‌دهد که نظریه طبیعی مجموعه‌های فرگه که برپایه‌ی کارهای جرج کانتور، بنیان‌گذار نظریه مجموعه‌ها، بود دارای تناقضاتی در درون خودش است.

بحث غیر رسمی

در نظریه طبیعی مجموعه‌ها دو اصل موضوع عمده وجود دارد که عبارت‌اند از اصل موضوع گسترش و اصل موضوع شهودی تجرید.

01

02

پارادکس راسل اولین عامل برای برانگیختن تلاش ریاضیدانان در جهت اصل موضوعی کردن نظریه مجموعه‌ها بود.

آنها سعی کردند نظریه مجموعه‌ها را بر پایهٔ اصولی قوی‌تر و پیچیده‌تر از اصل موضوع گسترش استوار کنند تا از تعریف چنین مجموعه‌هایی جلوگیری شود. این پارادکس، راسل را برای گسترش هرچه بیشتر نظریهٔ انواع و ارنست تسرملو را برای گسترش نظریه اصل موضوعی مجموعه‌ها سوق داد و موجب پیدایش نظریه مجموعه‌های تسرملو-فرانکیل و سایر دستگاه‌های اصل موضوعی مجموعه‌ها شد.

این پارادکس همچنین نشان می‌دهد که مجموعه همه مجموعه نیز که تا آن زمان وجود آن مسلم فرض می‌شد، وجود ندارد.

بیانی صوری از پارادکس راسل و تحلیل منطقی

در حقیقت بیان دیگری از این پارادکس به زبان منطق چیزی بجز اطلاعات منطق مقدماتی و تعریف مجموعه‌هایی انتزاعی نیاز ندارد. با استفاده از نماد مجموعه‌ساز که در نظریه طبیعی مجموعه‌ها وجود دارد می‌توان مجموعه زیر را تعریف کرد.

03

این یک تناقض است (در منطق ریاضی، تناقض گزاره همواره نادرست است). این تناقض با استثنا قراردادن برای مقادیر x رفع نمی‌شود چرا که موارد بسیاری از آنها را داریم.

 تاریـخچه

اینکه راسل چه موقع این پارادکس را کشف کرد دقیقاً مشخص نیست، ولی به‌نظر می‌رسد که در ماه می یا ژوئن سال ۱۹۰۱ و احتمالاً به عنوان نتیجه‌ای از کارش بروی قضیه کانتور(عدد اصلی هر مجموعه از عدد اصلی مجموعه توانی آن کمتر است) به این پارادکس پی برده‌است.

او ابتدا پارادکس را در سال ۱۹۰۱ به صورت مقاله‌ای در ماهنامهٔ اینترناشنال با عنوان «جدیدترین کار در فلسفه ریاضیات» مطرح کرد.

او همچنین برهان کانتور را در مورد اینکه بزرگ‌ترین عدد اصلی وجود ندارد مطرح ساخت و اضافه کرد که «استاد» در مورد یک مغالطه زیرکانه مقصر است که او بعداً در این باره توضیح می‌دهد.

راسل همچنین پارادکس را در کتاب خود با عنوان اصول ریاضیات (Principles of Mathematics)-که نباید با کتاب قبلی او Principia Mathematica اشتباه شود- ذکر کرد که آن را «تناقض» نامید. دوباره او بیان کرد که این پارادکس را با تجزیه و تحلیل برهان کانتور برای اثبات عدم وجود بزرگ‌ترین عدد اصلی به‌دست آورده‌است.

راسل در سال ۱۹۰۲ این پارادکس را با فرگه که در حال نوشتن جلد دوم کتاب خود با عنوان Grundgesetze der Arithmetik بود در میان گذاشت.

فرگه با عجله در ضمیمه‌ای راه حلی برای رفع این پارادکس نوشت که بعدها ناکافی بودن آن به اثبات رسید. به هر حال، بعد از چاپ جلد دوم کتاب، فرگه بعد از انتشار دومین بخش کتاب خود، کمی در مورد منطق ریاضی و فلسفه ریاضیات نوشت.

ارنست تسرملو در هنگام کار روی نظریه اصل موضوعی مجموعه‌ها که در سال ۱۹۰۸ آن را منتشر ساخت، به این پارادکس پی‌برد ولی گمان کرد نکتهٔ کوچکی است و لذا هیچ‌گاه آن را منتشر نساخت. تسرملو در دستگاه اصل موضوعی خود، از این پارادکس با بهره‌گیری از اصل موضوعی با عنوان اصل موضوع تصریح جلوگیری کرد.

راسل و الفرد نورث وایتهد سه جلد از کتاب اصول ریاضیات را به امید پیروزی در حالی که فرگه شکست خورده‌بود نوشتند و در آن سعی کردند با استفاده از نظریهٔ انواع، از چنین پارادکس‌هایی در نظریه طبیعی مجموعه‌ها اجتناب کنند.

هنگامی که آنها موفق به پایه‌ریزی حساب شدند، به نظر نمی‌رسید که فقط از منطق استفاده کرده باشند. به هر حال کورت گودل، در بین سال‌های ۱۹۳۰ تا ۱۹۳۱ ثابت کرد که منطق بسیاری از بخش‌های PM که اکنون به عنوان منطق مقدماتی خوانده می‌شود کامل است ولی حساب پئانو در صورتی که سازگار باشد لزوماً ناکامل است. بنابراین از این به بعد برنامه‌های منطقی فرگه و PM مردند.

نـمونه‌های کاربردی

مواردی ساده‌تر از پارادکس راسل نیز وجود دارد که بیشتر با واقعت‌ها در زندگی نزدیک است و برای غیر منطقیون قابل فهم‌تر است. به عنوان مثال پارادکس آرایشگر نمونه‌ای از آن است.

آرایشگری را فرض کنید که فقط ریش مردانی را می‌تراشد که خودشان ریش خود را نمی‌تراشند.

به بیان منطقی‌تر ریش مردان را می‌تراشد اگر و فقط اگر آنها ریش خود را نتراشند.

حال با مطرح کردن این سوال که آیا خود آرایشگر ریش خود را می‌تراشد یا نه؟ پارادکس آغاز می‌شود(چگونه؟).

اما هنگامی که این بیانات غیر رسمی و عامیانه از پارادکس را ارائه می‌دهیم اشکالی هم به‌وجود می‌آید. به عنوان نمونه در جواب پارادکس آرایشگر آسان است که بگوییم چنین آرایشگری وجود نخواهد داشت. تمامی نکتهٔ پارادکس راسل در این است که پاسخ «چنین مجموعه‌ای وجود ندارد» به معنی این است که تعریف مجموعه به کمک نماد مجموعه‌ساز بدون هیچ مرز و معیاری ناکافی است و رضایت بخش نیست. البته برخی نمونه‌ها از این پارادکس این اشکال را ندارد. از این نمونه می‌توان به پارادکس گریلینگ-نلسون(Grelling-Nelson) اشاره کرد که در آن کلمات و معنای آنها بجای افراد و آرایشگر قرار گرفته‌اند.

این آسان است که پارادکس آرایشگر را با رد وجود چنین آرایشگری رفع کنیم ولی گفتن چنین چیز مشابهی در مورد لغات و معناها ممکن نیست.

 پاسخ نـظریه مـجموعـه‌ها به پارادکس

راسل به همراه آلفرد نورث وایتهد(Alfred North Whitehead) با گسترش نظریهٔ انواع سعی در دور کردن پارادکس کرد. در همین حال چالش‌های دیگری در نظریهٔ مجموعه‌ها پیدا شدند.

در سال ۱۹۰۸ ارنست تسرملو یک دستگاه اصل موضوعی را برای نظریهٔ مجموعه‌ها ارائه داد که از پارادکس‌های نظریه مجموعه‌ها جلوگیری می‌کرد. این اصول به‌وسیله آبراهام فرانکیل، تورالف اسکولم و خود تسرملو در سال ۱۹۲۰ اصلاح شدند و سرانجام نظریه اصل موضوعی مجموعه‌ها را بوجود آوردند که آن را نظریه مجموعه‌های تسرملو-فرانکیل یا ZFC می‌نامند.

04

در این صورت مجموعهٔ ناممکن راسل R دیگر یک مجموعهٔ معتبر از نظر ZFC نخواهد بود و اساساً قابل تعریف نخواهد بود.

اما ZFC تنها نظریهٔ اصل موضوعی به‌وجود آمده نبود بلکه نظریه‌های دیگری چون نظریه مجموعه‌های فون نیومن-گودل-برنیز(NGB) یا مبانی جدید و… نیز به‌وجود آمدند که هر یک دارای اصول موضوع خاص و محدودیت‌هایی هستند.

برای مطالعه بیشتر:

http://en.wikipedia.org/wiki/Russell’s_paradox

image_pdfimage_print
(6 نفر , میانگین : 5٫00 از 5)
لینک کوتاه مقاله : http://bigbangpage.com/?p=3606
اسماعیل جوکار

اسماعیل جوکار

نویسنده این مطلب: اسماعیل جوکار، دانشجوی مقطع کارشناسی فیزیک، علاقمند به فیزیک، نجوم و کیهان شناسی می باشد و به عنوان نویسنده در وب سایت بیگ بنگ فعالیت می کند.

شما ممکن است این را هم بپسندید

۲ پاسخ‌ها

  1. parsa گفت:

    میشه به زبان ساده تر بگید
    من هیچی نفهمیدم

  2. مهدی گفت:

    میگه که x نمیتوتونه عضو خودش نباشه تازه اصلا میگیم میتونه نباشه
    اما xزیر مجموعه R (که شامل همه مجموعه ها است میشه)
    حالا میشه گفت Rبه خودش تعلق نداره؟
    نمیشه چون اونوقت کل مجموعه میره زیر سوال
    میشه یه عدد باشه و متعلق به خودش نباشه یا مثلا یه مجموعه
    البته شاید من منظورو اشتباه فهمیدم اگه کسی دید گاه بهتری داره بگه

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *