گذار “دور نوردی” از تخیل به واقعیت!
بیگ بنگ: واژه ی دور نوردی یا تله پورت ناگزیر منظره ای از شگفتی های داستان های علمی-تخیلی چون انتقال دهنده های پیشتازان فضا و مخترعان دیوانه ای که برای دانششان عذاب می کشند را تجسم می کند.
به گزارش بیگ بنگ، تله پورت (Teleportation) که به آن دور فرستی نیز می گویند به تبدیل ماده به انرژی، ارسال آن به مقصد و تبدیل دوباره آن به ماده گفته می شود. با این کار می توان یک شی را با سرعت نور از جایی به جای دیگر منتقل کرد و بدون توجه به محدودیت های فیزیکی بین دو نقطه با تبدیل شی به داده و ارسال داده های آن از نقطه اول به صورت نور و دریافت آن در نقطه دوم (در مدت زمان کوتاهی نسبت به فاصله) دوباره جسم را به وجود آورد. این مفهوم به اندازه ی سفر سریعتر از نور و ماشین زمان بعید به نظر می رسد، اما دور نوردی به تدریج در حال به واقعیت پیوستن در مقیاس های ریز است. کامپیوترهای کوانتومی با تکیه بر اصولی که کار می کنند یک امید بزرگ برای یک جهش رو به جلو در فناوری محاسبات هستند.
تئوری پشت دورنوردی– به شکل دقیق تر دورنوردی کوانتومی– از یک بحث طولانی بین آلبرت اینشتین و نیلز بور پدیدار شد. اینشتین پایه های تئوری کوانتوم را بنا نهاد و پشتیبانی قدرتمند برای آن بود تا اینکه تصادف و احتمالات به صحنه آمد. او زمانی که نسل نوینی از فیزیک دانان روی زمینه ای کار می کردند که بر طبق آن ذرات کوانتومی به وسیله احتمالات کنترل می شوند، رویهاش را تغییر داد. او از این مسئله بیزار بود و اظهار میداشت: «تئوری حرف های زیادی می زند، اما در واقع ما را نسبت به مجهولات تئوری قدیمی نزدیک نمی برد. به هر حال، من متقاعد شده ام که او تاس نمی اندازد.»
به عنوان یک پیامد، اینشتین برای سال ها بور را با چالش هایی در مورد اعتبار فیزیک کوانتومی سرزنش می کرد. آخرین و بزرگترین این حمله ها در سال ۱۹۳۵ با یک مقاله بود که توسط اینشتین و دو تن از همکارانش، پودالسکی و روزن نوشته شد که با مخفف EPR شناخته می شود. این مقاله ثابت کرد که یا تئوری کوانتوم نادرست است یا اینکه آن ظاهرا غیر ممکن را ممکن می سازد. آزمایش EPR نشان داد که در آن باید امکان پذیر باشد که یک جفت ذره کوانتومی را در حالتی ایجاد کرد که با عنوان درهمتنیدگی شناخته می شود.
درهمتنیدگی حالتی است که این ذرات می توانند جدا از یکدیگر در جهات مخالف هم در جهان باشند و تغییری در یکی بلافاصله در دیگری باز تابیده شود. به هر راهی بود آنها توانستند به صورت آنی ارتباط برقرار کنند. اینشتین فکر میکرد که توانسته است یک شکاف در تئوری کوانتوم پیدا کند، اما در عوض یکی از جالب توجه ترین توانایی های ذرات کوانتومی را برجسته کرد. علاوه بر این، آزمایشها مرتبا نشان دادند که درهمتنیدگی در حقیقت وجود دارد.
برای عامه مردم اینگونه به نظر می رسد که درهمتنیدگی می تواند برای ارسال آنی پیام از یک سوی کیهان به سوی دیگر مورد استفاده قرار گیرد, اما اینگونه نیست. اطلاعاتی که درهمتنیده می شوند و قادر به ارتباط برقرار کردن هستند تصادفی بوده و غیرممکن است که کنترل شوند.
برای دورنوردی موفقیت آمیز یک شی، دستگاه دورنورد باید یک کپی دقیق از آن در حد حالت کوانتومی هر ذره اش ایجاد کند. اگر اینگونه نباشد، نسخه ی دورنوردی شده کاملا متفاوت خواهد بود. به هرحال، حتی اگر ما بتوانیم یک کپی دقیق از یک شی را ایجاد کنیم، غیر ممکن است که حالت کوانتومی ذره را بدون دگرگون کردنش کشف کنیم. این بدین معناست که غیر ممکن است که یک کپی کامل از یک ذره ی کوانتومی را برای تولید دوقلوهای یکسان ایجاد کرد – چیزی که در سال ۱۹۸۰ توسط دو فیزیکدان به صورت ریاضیاتی اثبات شد. به هر حال روزنه ای وجود دارد. آن امکان پذیر است که ویژگی ها را از یک ذره به ذره ای دیگر انتقال دهیم، به شرط آنکه مقادیر هرگز آشکار نشوند که این بدین معناست که ذره ی اصلی تا انتهای کار درهم آمیخته باشد.
درهمتنیدگی مکانیزم مورد نیاز برای اینکه این کار را فراهم می کند، این ایده در نشستی در مونترآل در سال ۱۹۹۳ مطرح شد. چارلز بنت یک پژوهشگر در IBM پیشنهاد کرد که یک جفت از ذرات درهمتنیده می توانند یک کانال ارتباطی بنیادی پنهان را فراهم کند. همانگونه که گیلس، برگزار کننده ی این رویداد توضیح داد: «بعد از دو ساعت آشفتگی فکری پاسخ دورنوردی از آب درآمد، درواقع آن کاملا ناگهانی بود.»
انجام دورنوردی کوانتومی نیازمند استفاده از سه ذره است. ما با یک جفت ذره ی درهمتنیده شروع می کنیم، یکی را روی فرستنده نگه می داریم و دیگری را به گیرنده می فرستیم، در واقع ذره ی سوم همانی است که دورنوردی می شود. او وارد واکنش با ذره ی درهمتنیده ی اول می شود، بی درنگ دگرگونی های مشاهده نشده ای در شریک درهمتنیده در انتهای گیرنده ایجاد می شود. سپس فرستنده اندازه گیری هایی را روی دو ذره ی خود انجام می دهد. این فرآیند اطلاعات را آشکار می سازد و داده ها با ارتباطات متداول برای ذره دوردست فرستاده می شوند. نتیجه: ذره ی درهمتنیده ی دوردست در همان حالت منبع قرار می گیرد. اینگونه یک ذره به طور موثری از A به B فرستاده شده است. تنها چهار سال بعد بود که آنتون تسایلینگر و فرانسسکو دی مارتینی بخشی از دورنوردی را نشان دادند، قطبش یک فوتون را به دیگری انتقال دادند. [قطبش یکی از ویژگی های امواج است که جهت نوسان را نشان می دهد.]
در سال ۲۰۰۴ تسایلینگر قطبش فوتون منبع را از میان رودخانه ی دانوب دورنوردی کرد، فوتون درهمتنیده را در یک کابل فیبر نوری در زیر رودخانه از میان فاضلاب ها فرستادند و اطلاعات قراردادی را به وسیله امواج مایکروویو از میان رودخانه به طول ۶۰۰ متر فرستادند. بعد از همه ی اینها ممکن است اینگونه به نظر برسد که دورنوردی فوتون ها بی ربط است زیرا اینکه نور را از مکانی با سرعت بالا به مکانی دیگر فرستاد، مشکل نیست. اما اصول می توانند در مورد ذرات کوانتومی ماده به خوبی به کار برده شوند و دورنوردی فوتون ها نخستین گام پشتیبانی از یک کامپیوتر کوانتومی است که از حالت های ذرههای کوانتومی به عنوان «کیوبیت» استفاده می کند. کیوبیت واحد پایه ای پردازش کوانتومی و می توان گفت برابر کوانتومی بیت ها در کامپیوترهای معمولی است.
دکتر رونالد هنسون از دانشگاه صنعتی دلفت می گوید: « دورنوردی کوانتومی تنها روشی است که ما می شناسیم که به وسیله ی آن می توانیم اطلاعات کوانتومی را به شکل مطمئنی در فواصل طولانی انتقال دهیم.» با گذشت ۱۰ سال از زمان آزمایش دانوب، بیشتر کوشش ها به سمت دورنوردی های کوانتومی بزرگ و قابل تکرار رفته و فرآیند از فوتون ها به اتم ها تعمیم داده شده است. بدون دورنوردی کوانتومی، رایانش کوانتومی نیز نخواهد بود که امکان محاسبات کارآمدی را ارائه می دهد که کامپیوترها معمولی برای تکمیل آن به زمانی به اندازه ی عمر کیهان نیاز دارند.
در سال ۲۰۰۹ یک گروه از موسسه کوانتومی جوینت در دانشگاه مریلند و دانشگاه میشیگان یک حالت کوانتومی را از یک اتم به اتمی دیگر در یک متری اش دورنوردی کرد و این کار در ۹۰ درصد موارد موفقیت آمیز بود. کار اصلی مریلند امسال در دانشگاه دلفت انجام شد. دورنوردی ویژگی که «اسپین» نام دارد بین الکترون ها در فاصله ی سه متری با نرخ موفقیت ۱۰۰ درصد. این الکترون ها درون الماس به دام انداخته شده بودند، یک الماس خالص یک شبکه (ساختاری سه بعدی) کامل از اتم های کربن است، اما با ترکیب کردن نیتروژن به عنوان ناخالصی در شبکه شکاف هایی ایجاد می شود که در پی آن یک الکترون به دام افتاده میتواند به عنوان یک کیوبیت عمل کند. این یک گام مهم دیگر بود برای اینکه دورنوردی کانالی ارتباطی برای یک کامپیوتر کوانتومی کاربردی شود. دکتر هنسون توضیح داد: « آزمایش ما اولین آزمایشی است که دورنوردی را بین دو تراشه حالت جامد نشان می دهد. از آن جایی که ما باور داریم که اینترنت کوانتومی ترکیبی است از گره هایی که از تراشه های کامپیوتری کوانتومی ساخته شده اند، این شاهکار بسیار مهم است.»
در همین زمان دیگران محدوده را توسعه دادند, با رکورد فعلی ۱۴۳ کیلومتر که به وسیله ی تسایلینگر کسب شده است. یک ماهواره چینی که در سال ۲۰۱۶ پرتاب می شود آزمایشهای ارتباطات کوانتومی را برای جستجوی احتمالات برای بررسی درهمتنیدگی و دورنوردی بین فضا و زمین همراه خود حمل می کند که نخستین گام اساسی برای ساخت اینترنت کوانتومی خواهد بود.
چنین به نظر می رسد که این آزمایشها ارسال سه متری دلفت را کاملا در حاشیه قرار دهند، اما محدوده ی نرخ موفقیت آن ها تنها حدود ۱ در ۱۰۰۰ است. همین امر این روش را برای وظایف محاسباتی دنیای واقعی که بر دقت و درستی تکیه دارد غیر عملی می سازد و روش دلفت را در قله قرار می دهد، دکتر هنسون توضیح می دهد: « ما می دانیم زمانی که درهمتنیدگی را بدون تباه کردن آن ایجاد کنیم از این راه می توانیم از درهمتنیدگی در آزمایش بعدی برای دورنوردی استفاده کنیم که هر بار کار کند.»
به آرامی اما با اطمینان
راه زیادی برای پیمودن مانده است. آنگونه که کریس مونرو از تیم میشیگان اظهار داشت، هر دو آزمایشهای میشیگان و دلفت یک ایراد دارند. او توضیح می دهد:« آنها به طرز ناراحت کننده ای آهسته هستند: یک کیوبیت موفقیت آمیز در هر پنج دقیقه یا بیشتر اتفاق میافتد. احتمال موفقیت تولید درهمتنیدگی در هر دو آزمایش بسیار کم بود، در حدود یک در ۱۰ میلیون و این یعنی هیچ راهی برای افزایش آن ها برای دورنوردی سیستم های بزرگتر نیست.» به هر حال گروه مونرو برای تسریع دورنوردی با ضریب ۵۰۰۰ مدیریت شده که فرآیند را مقداری به یک راه حل عملی نزدیک تر می کند.
سرویس مخفی
ارتش ایالات متحده در حال توسعه ی یک سیستم ارتباطی کوانتومی برای ارسال پیام های محرمانه است. شکل اولیه روش، از راه ایجاد فوتون هایی برای حمل اطلاعات و سپس اجازه دادن به آنها برای واکنش با جفت فوتون های درهمتنیده میباشد، با نیمی از آن ها که به گیرنده گسیل شده اند. هر کوششی برای اینکه جلوی فوتون ها را در بین راه بگیرند به وسیله ی منحرف شدن درهمتنیدگی حساس، آشکار می شود. چالش پیش روی دانشمندان ارتش ایالات متحده به حداقل رساندن صدمات وارده به فوتونها در زمان گذر از میان آشفتگی میدان جنگ است. به نظر می رسد که دورنوردی برای رایانه های کوانتومی به زودی امکان پذیر باشد. اما آیا ما می توانیم زمانی یک جسم فیزیکی قابل لمس را دورنوردی کنیم؟
در مورد یک انسان به نظر ناممکن می رسد و کریس مونرو اظهار داشت که حتی یک مولکول بزرگ تنها نیز یک چالش مهم ارائه می دهد. او می گوید:« اگر شما علاقمند به دورنوردی حالت یک مولکول DNA هستید, درجات زیادی از آزادی وجود دارد و پیکربندی های ممکن زیادی که بسیار مشکل میتوان تصور کرد که این به زودی انجام گیرد.» به عنوان نمونه برای یک فرد آیا شما می توانید ذرات را به صورت فیزیکی ارسال کنید اما ساختارها را برای ساختن آن دورنوردی کنید؟
مونرو می گوید:« زمانی که کاپیتان کرک (کاپیتان سفینه اینترپرایز در مجموعه تلویزیونی پیشتازان فضا) از سیاره به سفینه ی اینترپرایز دورنوردی میشد, حتی یک اتم هم از بدنش سفر نکرد. در رسیدن پوسته تمام اتم هایی که او را می سازند بایستی پیش تر در آن جا باشند و تنها چیزی که حمل می شود پیکربندی دقیق و اطلاعات کوانتومی رمزنگاری شده بین تمام اتم های اوست. من نمی دانم که زیرلایهی کاپیتان کرک چه شکلی خواهد بود اما گمان نمی کنم که خوش نما باشد.»
ممکن نیست که ما به این زودی ها کسی را دورنگاری کنیم! اما حداقل دورنوردی کوانتومی ما را یک گام بزرگ به رایانه های کوانتومی قابل استفاده نزدیکتر کرد.
باز نشر: بیگ بنگ/محسن کرمی – نشریه دانشمند – شماره ۶۱۴ – آذر ۱۳۹۳
منبع: نشریه فوکوس
سلام.راجب تله پورت تحقیقات زیادی کردم و هنه جا نوشته بودن که انتقال آنی هست (بدون گذر زمان و محدودیت) و فاصله هزاران سال نوری در یک آن طی میشه ولی اینجا فرمودید با سرعت نور منتقل میشه
باسلام و تشکر از مقاله فوق العاده تان
یه چیز رو نتونستم درک کنم؛ مگه دور نوردی کوانتومی با استفاده از دو ذره درهم تنیده انجام نمیگیره پس ما چرا ذره ای رو ارسال میکنم؟
آقا محسن دمت گرم
سپاسگذارم امیر جان